Explicit formulae for Kerov polynomials
نویسندگان
چکیده
We prove two formulae expressing the Kerov polynomial Σk as a weighted sum over the set of noncrossing partitions of the set {1, . . . , k + 1}. We also give a combinatorial description of a family of symmetric functions specializing in the coefficients of Σk .
منابع مشابه
Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials
Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$ x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x),$$ we find the coefficients $b_{i,j}^{(p,q,ell ,,r)}$ in the expansion $$ x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell }y^{r}f^{(p,q)}(x,y) =sumli...
متن کاملAn Explicit Form for Kerov’s Character Polynomials
Kerov considered the normalized characters of irreducible representations of the symmetric group, evaluated on a cycle, as a polynomial in free cumulants. Biane has proved that this polynomial has integer coefficients, and made various conjectures. Recently, Śniady has proved Biane’s conjectured explicit form for the first family of nontrivial terms in this polynomial. In this paper, we give an...
متن کاملOperational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملOn composition of generating functions
In this work we study numbers and polynomials generated by two type of composition of generating functions and get their explicit formulae. Furthermore we state an improvementof the composita formulae's given in [6] and [3], using the new composita formula's we construct a variety of combinatorics identities. This study go alone to dene new family of generalized Bernoulli polynomials which incl...
متن کاملThe Operational matrices with respect to generalized Laguerre polynomials and their applications in solving linear dierential equations with variable coecients
In this paper, a new and ecient approach based on operational matrices with respect to the gener-alized Laguerre polynomials for numerical approximation of the linear ordinary dierential equations(ODEs) with variable coecients is introduced. Explicit formulae which express the generalized La-guerre expansion coecients for the moments of the derivatives of any dierentiable function in termsof th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010